Evaluation Between Likelihood Search Method and Back Propagation Method in Neural Networks Learning
نویسندگان
چکیده
منابع مشابه
A Differential Adaptive Learning Rate Method for Back-Propagation Neural Networks
In this paper a high speed learning method using differential adaptive learning rate (DALRM) is proposed. Comparison of this method with other methods such as standard BP, Nguyen-Widrow weight Initialization and Optical BP shows that the network’s learning speed has highly increased. Learning often takes a long time to converge and it may fall into local minimas. One way of escaping from local ...
متن کاملAn Improved Learning Algorithm based on the Conjugate Gradient Method for Back Propagation Neural Networks
The conjugate gradient optimization algorithm usually used for nonlinear least squares is presented and is combined with the modified back propagation algorithm yielding a new fast training multilayer perceptron (MLP) algorithm (CGFR/AG). The approaches presented in the paper consist of three steps: (1) Modification on standard back propagation algorithm by introducing gain variation term of th...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملFast learning method for back-propagation neural network by evolutionary adaptation of learning rates
In training a back-propagation neural network, the learning speed of the network is greatly affected by its learning rate. None, however, has offered a deterministic method for selecting the optimal learning rate. Some researchers have tried to find the sub-optimal learning rates using various techniques at each training step. This paper proposes a new method for selecting the sub-optimal learn...
متن کاملBack - Propagation Neural Networks for
A back-propagation neural network is applied to a nonlinear self-tuning tracking problem. Traditional self-tuning adaptive control techniques can only deal with linear systems or some special nonlinear systems. The emerging back-propagation neural networks have the capability to learn arbitrary nonlinearity and show great potential for adaptive control applications. A scheme for combining back-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 1998
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.34.41